# A Competitive WTA ANN for Classification a Calorific Value of a Coal Fuel in Combustion Chambers Using FPAA

K. Wawryn, R. Suszyński, J. Marciniak Department Electronics and Computer Science Koszalin University of Technology Koszalin, Poland roberts@tu.koszalin.pl

*Abstract* — A hardware approach based on a winner takes all artificial neural network to classify a calorific value of a coal fuel in combustion chambers is proposed in the paper. The approach is based on an analysis of measured combustion process parameters in the chamber. Measured parameters have been used to train neural network weights with a help of MATLAB program. The winner takes all formula has been used to train synaptic weights. Calculated weights have been used in the recall mode to find out the calorific value of the coal fuel loaded into the chamber. The winner takes all artificial neural network approach has been verified by the MATLAB program and in the FPAA implemented network. Obtained results are presented and discussed.

*Keywords*— artificial neural network; winner takes all circuit; FPAA; calorific value of a coal fuel

## I. INTRODUCTION

Significant heat losses accompany a production of a heat in a huge industrial chamber. The losses are a result of incomplete carbon combustion phenomena and depend on many factors i.e. a diversity and a quality of a fuel loaded into the chamber, an amount and a pressure of an inflating air and a temperature in the chamber. A detection of the amount of evaporated undesirable flammable gases CO, H<sub>2</sub> and CH<sub>4</sub> or a recognition the calorific value of the coal fuel loaded into the chamber require specialized measurement equipment[1-2]. Determining the fuel parameters during the combustion process in the chamber delivers real time feedback data to the hardware control of the combustion process. Recently, several artificial intelligence (AI) approaches to aid the control of the combustion process and to reduce the heat losses in the industrial chambers have been developed [3-10]. Our approach relies on a fast classification of the calorific value of the coal fuel loaded into the chamber. The classification results in feedback data to optimize combustion parameters. The method is based on winner takes all (WTA) artificial neural network (ANN) implemented in a field programmable analog array (FPAA) device. The ANN methods are successfully used to solve multidimensional classification problems. The FPAA device provides with several advantages to build hardware

systems [11-15] i.e. programmability, parallel processing and prototyping. Proposed FPAA WTA ANN may be easily incorporated into a hardware control system of the combustion process.

# II. PROPOSED APPROACH

Our method relies on an analysis of measured combustion process parameters in the chamber. A telemetry system is used to measure the parameters. The parameters have been used to calculate the weights of the proposed ANN. In the recall mode the ANN is used to determine the calorific value of the coal fuel in the chamber. Finally, the network has been implemented in the FPAA device and tested to verify hardware solution of the ANN.

## A. Measurement of the combustion process parameters

The telemetry system in two boiler water grates type WR-25, made in the technology of tight walls using controller S7-300 have been applied to measure six parameters affecting the combustion process. All of 8479 measurements have been made at the ambient air temperature 3-5°C. Both heat sources have been supplied by the fuel of 22230 kJ/kg. The following parameters have been measured:

- $x_1$  output boiler temperature of the circulating water in °C,
- • $x_2$  thickness of the fuel layer in cm,
- • $x_3$  pressure of inflating air to the boiler kPa,
- • $x_4$  velocity of grill movement in %,
- • $x_5$  amount of an oxygen in the boiler in %,
- y calorific value of the coal fuel 1..4,

| where | 1 – 22000 kJ/kg - 22750 kJ/kg |
|-------|-------------------------------|
|       | 2 – 22751 kJ/kg - 23500 kJ/kg |
|       | 3 – 23501 kJ/kg - 24250 kJ/kg |
|       | 4 – 24251 kJ/kg - 25000 kJ/kg |
|       |                               |

Results of the measurements, shown in Table 1, are used to determine the calorific value of the coal fuel as a function of the five remaining parameters. The function is achieved in the WTA ANN weight training process.

| TABLE I.TRAINING DATA |                       |                       |                       |        |                       |     |
|-----------------------|-----------------------|-----------------------|-----------------------|--------|-----------------------|-----|
| No.                   | Inputs                |                       |                       |        |                       | Out |
|                       | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$  | <i>x</i> <sub>5</sub> | у   |
| 16                    | 107,5145              | 54,8844               | 36,0694               | 5,4806 | 11,6474               | 1   |
| 17                    | 113,1214              | 54,5954               | 34,9422               | 5,7780 | 11,6474               | 1   |
| 18                    | 116,0116              | 63,7861               | 40,0289               | 6,3789 | 11,6474               | 1   |
| :                     | :                     | :                     | :                     | :      | :                     | :   |
| 5656                  | 123,5838              | 63,3526               | 40,0289               | 6,7795 | 12,0145               | 2   |
| 5657                  | 123,9884              | 63,3526               | 40,0289               | 6,6824 | 12,0145               | 2   |
| 5658                  | 116,3006              | 63,4682               | 40,0289               | 7,1861 | 12,0145               | 2   |
| :                     | :                     | :                     | •                     | :      | :                     | :   |
| 7993                  | 113,6994              | 75,1156               | 34,9133               | 8,4910 | 12,5116               | 3   |
| 7994                  | 115,1445              | 74,3064               | 34,9133               | 7,8902 | 12,5116               | 3   |
| 7995                  | 113,1214              | 74,7399               | 35,4913               | 7,5867 | 12,5116               | 3   |
| :                     | :                     | :                     | :                     | :      | :                     | :   |
| 8191                  | 118,4971              | 66,7630               | 41,7052               | 6,4821 | 12,5000               | 4   |
| 8192                  | 121,6185              | 64,3353               | 39,4509               | 6,3789 | 12,5000               | 4   |
| 8193                  | 120,5202              | 67,0231               | 41,7052               | 6,7795 | 12,5000               | 4   |

B. WTA neural network formulation



Fig. 1. WTA neural network.

Recently, plenty of artificial neural network architectures [16-19] have been applied in many control systems. Our approach adopts a competitive WTA architecture [18-23]. The WTA network consists of m neurons with programmable synapse weights and WTA circuit as shown in Fig. 1. In the WTA network the weight vectors are represented by

$$\boldsymbol{W}_{i} = \{ w_{i1}, w_{i2}, \dots, w_{in} \}$$
(1)

the input voltage vector is represented by

$$\boldsymbol{U}_{IN} = \{ u_{IN1,} u_{IN2,} \dots , u_{INn} \}$$
(2)

and the output voltage vector

$$\boldsymbol{U}_{\boldsymbol{OUT}} = \{\boldsymbol{u}_{\boldsymbol{OUT1}}, \boldsymbol{u}_{\boldsymbol{OUT2}}, \dots, \boldsymbol{u}_{\boldsymbol{OUTm}}\}$$
(3)

where n denotes number of input signals, m denotes number of neurons and

$$u_{OUTi} = \boldsymbol{W}_{i}^{T} \boldsymbol{U}_{IN} = \sum_{j=1}^{n} w_{ij} u_{INj} \quad i = 1, 2, \dots, m$$
(4)

is defined. The WTA function consists of identifying the largest among components of  $U_{out}$ . The  $m^{\text{th}}$  output current winner selection is based on the following criterion of maximum activation among all m neurons participating in a competition

$$u_{OUTk} = \boldsymbol{W}_{\boldsymbol{k}}^{\mathrm{T}} \boldsymbol{U}_{\boldsymbol{IN}} = \max_{i = 1, 2, \dots, m} (\boldsymbol{W}_{\boldsymbol{i}}^{\mathrm{T}} \boldsymbol{U}_{\boldsymbol{IN}}) = \max_{i = 1, 2, \dots, m} \sum_{j=1}^{n} w_{ij} u_{INj}$$
(5)

Weights of the winning neuron with the largest  $u_{OUTk}$  are adjusted, while the weights of the others remain unaffected. As such, WTA basic learning law to update synaptic weight of the  $k^{\text{th}}$  neuron that won the competition can be expressed as [16]

$$W_k^{new} = W_k^{old} + \alpha (U_{IN} - W_k^{old})$$
(6)

where  $\alpha > 0$  is a small learning constant. The losing neurons are not allowed to change its weights. Equation (6) can be rearranged to update each vector element (synaptic weights of the  $k^{\text{th}}$  winning neuron) as follows

$$W_{kj}^{new} = (1 - \alpha) w_{kj}^{old} + \alpha u_{INj}$$
(7)

## C. FPAA implementation

Our idea is to build a cost effective classification system of the calorific value of a coal fuel in combustion chambers with a help of FPAA. For our work four FPAA AN231E04 device is used [24]. Five input programmable competitive 4-WTA ANN circuit has been implemented in the FPAA to classify caloricity of the coal fuel. It consists of three 2-WTA circuits shown in Fig. 2. The 2-WTA circuit identifies the smaller of its two voltages and produces an output voltage which is a copy of its local winner. The 4-WTA circuit shown in Fig. 3.



Fig. 2. 2-WTA circuit.



Fig. 3. 4-WTA circuit structure.

Programmability of synaptic weight  $w_{kj}$  with respect to learning signal  $u_{skj}$  is usually the following linear function

$$w_{ki}^{new} = f(u_{Ski}) = c u_{Ski} \tag{8}$$

where c is constant. Taking equation (8) into account in equation (7) the following update for learning signal can be obtained

$$u_{Skj}^{new} = (1 - \alpha)u_{Skj}^{old} + \frac{\alpha}{c}u_{INj}$$
<sup>(9)</sup>

The learning signal is obtained in a structure composed of summer, delay circuit and amplifiers where appropriate gains are equal  $1-\alpha$  and  $\alpha/c$ . The programmable synaptic weight circuit is shown in Fig. 4.

Proposed FPAA competitive ANN has been implemented in MATLAB program to train the ANN synaptic weights. Obtained weights are implemented in the FPAA ANN to classify the calorific value of the coal fuel. The structure of the 4-WTA ANN is implemented in FPAA1 and in shown in Fig. 5a. The programmable weight structure is implemented in FPAA4 shown in Fig. 5b.



Fig. 4. Programmability of a synaptic weight circuit structure  $w_{kj}$ .

a)





Fig. 5. An implementation of the WTA ANN, a) proposed 4-WTA ANN b) proposed programmable synaptic weight.

## III. EXPERIMENTAL RESULTS

The combustion process parameters in the boiler have been measured and gathered in Table 1. They have been used to train ANN shown in Fig. 1 by the use of MATLAB program. MATLAB implementation of the WTA ANN weight training process is shown in Fig. 6. The weight matrix after training process is shown in Table 2. Obtained weights have been used to determine the calorific value of the coal fuel loaded into the boiler. The WTA ANN has been verified in the recall mode by the MATLAB program and the FPAA implemented network. Obtained data shown in Table 3 confirm that the calorific value of the coal fuel not need to be measured and it can be recognized by the WTA ANN very fast. The results can be easily used in any hardware system to control a combustion process.

TABLE II. CALCULATED WEIGHTS AND BIASES OF ANN

|   | ANN               |                   |                   |                   |  |  |
|---|-------------------|-------------------|-------------------|-------------------|--|--|
|   | $w_{11} = 0.7144$ | $w_{21} = 0.8684$ | $w_{31} = 0.5528$ | $w_{41} = 0.7965$ |  |  |
|   | $w_{12} = 0.6713$ | $w_{22} = 0.9129$ | $w_{32} = 0.4975$ | $w_{42} = 0.7816$ |  |  |
| w | $w_{13} = 0.4230$ | $w_{23} = 0.6819$ | $w_{33} = 0.2576$ | $w_{43} = 0.5125$ |  |  |
|   | $w_{14} = 0.3088$ | $w_{24} = 0.2915$ | $w_{34} = 0.3421$ | $w_{44} = 0.3081$ |  |  |
|   | $w_{15} = 0.8932$ | $w_{25} = 0.9253$ | $w_{35} = 0.8422$ | $w_{45} = 0.9180$ |  |  |
| b | $b_1 = 10.8922$   | $b_2 = 10.8860$   | $b_3 = 10.8642$   | $b_4 = 10.8502$   |  |  |

#### IV. CONCLUDING REMARKS

Proposed competitive WTA ANN has been designed and implemented successfully in the FPAA device to classify the calorific value of the fuel loaded into the industrial heat boiler. The hardware implementation of the WTA ANN results in several advantages such as: programmability of the neural network structure, fast parallel data processing and low cost. Proposed WTA ANN may be easily incorporated into a complex hardware system to control the combustion process.



Fig. 6. MATLAB implementation of the weight learning process.

TABLE III. TEST DATA

| No   | Inputs   |         |         |        |         | ANN | FPAA |
|------|----------|---------|---------|--------|---------|-----|------|
| 190. | $x_1$    | $x_2$   | $x_3$   | $x_4$  | $x_5$   | y'  | y''  |
| 1    | 117,3410 | 59,5665 | 34,9422 | 7,3925 | 11,6474 | 1   | 1    |
| 2    | 114,6243 | 58,8150 | 34,3642 | 7,2893 | 11,6474 | 1   | 1    |
| 3    | 113,4682 | 59,8844 | 35,4913 | 7,5867 | 11,6474 | 1   | 1    |
| 31   | 98,0925  | 60,6069 | 40,0289 | 8,4910 | 12,0145 | 2   | 2    |
| 32   | 97,2254  | 59,3931 | 40,0289 | 8,5882 | 12,0145 | 2   | 2    |
| 78   | 120,1156 | 75,1156 | 35,4913 | 6,6824 | 12,5116 | 3   | 3    |
| 79   | 117,8035 | 74,4509 | 34,9133 | 6,5853 | 12,5116 | 3   | 3    |
| 93   | 129,7688 | 72,7457 | 45,1156 | 5,1772 | 12,5000 | 4   | 4    |
| 94   | 130,4624 | 71,2428 | 42,8613 | 5,4806 | 12,5000 | 4   | 4    |

#### REFERENCES

- C. Lou, H. Zhou, P. Yu, and Z. Jiang, "Measurements of the flame emissivity and radiative properties of particulate medium in pulverizedcoal-fired boiler furnaces by image processing of visible radiation," in Proc. of the Combustion Institute, vol. 31, 2007, pp. 2771-2778.
- [2] M. Gölles, S. Reiter, T. Brunner, N. Dourdoumas, and I. Obernberger, "Model based control of a small-scale biomass boiler," Control Engineering Practice, vol. 22, 2014, pp. 94-102.
- [3] S.A. Kalogirou, "Artificial intelligence for the modeling and control of combustion processes: a review," Progress in Energy and Combustion Science, vol. 29, 2003, pp. 515-566.

- [4] A. Hosovsky, "Genetic optimization of neural network structure for modeling of biomass-fired boiler emissions," Journal of applied science in the thermodynamics and fluid mechanics, vol. 9, no. 2, 2011, pp. 1-6.
- [5] P. Manke, and S. Tembhurne, "Application of back propagation neural network to drum level control in thermal power plants," International Journal of Computer Science, 2012, pp. 520-526.
- [6] H. Ye, and W. Ni, "Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network," J. of Thermal Science, 1997, pp. 141-148.
- [7] J. Blasco, N. Fueyo, C. Dopazo, and J.Y. Chen, "Self-organizing-map approach to chemistry representation in combustion applications," Combustion Theory and Modelling, vol. 4, no. 1, 2000, pp. 61-76.
- [8] L. Wang, "The apllication of fuzzy neural network to boiler steam presure control," International Journal of Computer Science, 2013, pp. 704-707.
- [9] J. Marciniak, "The detection of anomalies in controlling of the combustion process by using a genetic algorithm," Diagnostyka, vol. 17, no. 1, 2016, pp. 21-26.
- [10] J. Marciniak, "The detection of anomalies in controlling of the combustion process by using a negative selection algorithm," Diagnostyka, vol. 17, no. 1, 2016, pp. 28-31.
- [11] L. Znamirowski, O.A. Palusinski, and S.B.K. Vrudhula, "Programmable Analog/Digital Arrays in Control and Simulation," Analog Integrated Circuits and Signal Processing, vol. 39, 2004, pp. 55-73.
- [12] T.R. Balen, A.Q. Andrade, F. Azais, M. Lubaszewski, and M. Renovell, "Applying the Oscillation Test Strategy to FPAA's Configurable Analog Blocks," Journal of Electronic Testing: Theory and Applications, vol. 21, 2005, pp. 135-146.
- [13] H. Widyantara, M. Rivai, and D. Purwanto, "Neural Network for Electronic Nose using Field Programmable Analog Arrays," Int. J. of Electrical and Computer Engineering (IJECE), vol. 2, no. 6, 2012, pp. 739-747.
- [14] R. Suszynski, and K. Wawryn, "Rapid prototyping of algorithmic A/D converters based on FPAA devices," Bulletin of the Polish Academy of Sciences-Technical Sciences, vol. 61, no. 3, 2013, pp. 691-696.
- [15] R. Suszynski, and K. Wawryn, "Prototyping of Higher Order Sigma Delta ADC Based on Implementation of a FPAA," In Proc. of the Int. Conf. on Signals and Electronic Systems (ICSES), 2012, pp. 1-4.
- [16] T. Kohonen, "An introduction to neural computing." Neural Networks, Vol. 1, pp. 3-16,1988.
- [17] C. Mead and M. Ismail, 1989. Analog Implementation of Neural Systems. Kluwer Academic Publishers, 1989.
- [18] J.M. Żurada, "Introduction to Artificial Neural systems," West Publishing Company, 1992.
- [19] K. Wawryn, and B. Strzeszewski, "Current mode circuits for programmable WTA neural network," Analog Integred Circuits and Signal Processing, vol. 27, no. 1-2, 2001, pp. 49-69.
- [20] Y. He and E. Sanchez-Sinencio, "Min-net winner-take-all CMOS implementation." Electron. Lett., Vol. 29, 1993, pp. 1237-1239.
- [21] T. Talaska, and R. Dlugosz, "Analog Sorting Circuit for the Application in Self-Organizing Neural Networks Based on Neural Gas Learning Algorithm," 2015, pp. 282-286.
- [22] R. Wojtyna, "Analog low-voltage low-power CMOS circuit for learning Kohonen networks on silicon," Int. Conf. Mixed Design of Integrated Circuits and Systems, (MIXDES), 2010, pp. 209-214.
- [23] K. Wawryn, and B. Strzeszewski, "Prototype low power WTA circuits for programmable neural networks," in Proc. Int. Symp. Circuits and Systems, Geneva, Vol. 5, pp. 753÷756, 2000.
- [24] "AnadigmApex dpASP" Family User Manual. Anadigm. Inc., 2005J. Clerk Maxwell. A Treatise on Electricity and Magnetism. 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.