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Abstract — A hardware approach based on a winner takes all 

artificial neural network to classify a calorific value of a coal fuel 

in combustion chambers is proposed in the paper. The approach 

is based on an analysis of measured combustion process 

parameters in the chamber. Measured parameters have been 

used to train neural network weights with a help of MATLAB 

program. The winner takes all formula has been used to train 

synaptic weights. Calculated weights have been used in the recall 

mode to find out the calorific value of the coal fuel loaded into the 

chamber. The winner takes all artificial neural network 

approach has been verified by the MATLAB program and in the 

FPAA implemented network. Obtained results are presented and 

discussed. 
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I.  INTRODUCTION 

Significant heat losses accompany a production of a heat in 
a huge industrial chamber. The losses are a result of incomplete 
carbon combustion phenomena and depend on many factors i.e. 
a diversity and a quality of a fuel loaded into the chamber, an 
amount and a pressure of an inflating air and a temperature in 
the chamber. A detection of the amount of evaporated 
undesirable flammable gases CO, H2 and CH4 or a recognition 
the calorific value of the coal fuel loaded into the chamber 
require specialized measurement equipment[1-2]. Determining 
the fuel parameters during the combustion process in the 
chamber delivers real time feedback data to the hardware 
control of the combustion process. Recently, several artificial 
intelligence (AI) approaches to aid the control of the 
combustion process and to reduce the heat losses in the 
industrial chambers have been developed [3-10]. Our approach 
relies on a fast classification of the calorific value of the coal 
fuel loaded into the chamber. The classification results in 
feedback data to optimize combustion parameters. The method 
is based on winner takes all (WTA) artificial neural network 
(ANN) implemented in a field programmable analog array 
(FPAA) device. The ANN methods are successfully used to 
solve multidimensional classification problems. The FPAA 
device provides with several advantages to build hardware 

systems [11-15] i.e. programmability, parallel processing and 
prototyping. Proposed FPAA WTA ANN may be easily 
incorporated into a hardware control system of the combustion 
process. 

II. PROPOSED APPROACH 

Our method relies on an analysis of measured combustion 
process parameters in the chamber. A telemetry system is used 
to measure the parameters. The parameters have been used to 
calculate the weights of the proposed ANN. In the recall mode 
the ANN is used to determine the calorific value of the coal 
fuel in the chamber. Finally, the network has been 
implemented in the FPAA device and tested to verify hardware 
solution of the ANN. 

A. Measurement of the combustion process parameters 

The telemetry system in two boiler water grates type WR-
25, made in the technology of tight walls using controller S7-
300 have been applied to measure six parameters affecting the 
combustion process. All of 8479 measurements have been 
made at the ambient air temperature 3-5

o
C. Both heat sources 

have been supplied by the fuel of 22230 kJ/kg. The following 
parameters have been measured: 

 x1 – output boiler temperature of the circulating water in 
o
C, 

 x2 – thickness of the fuel layer in cm, 

 x3 – pressure of inflating air to the boiler kPa, 

 x4 – velocity of grill movement in %, 

 x5 – amount of an oxygen in the boiler in %, 

 y – calorific value of the coal fuel 1..4, 

 where  1 – 22000 kJ/kg - 22750 kJ/kg 

   2 – 22751 kJ/kg - 23500 kJ/kg 

   3 – 23501 kJ/kg - 24250 kJ/kg 

   4 – 24251 kJ/kg - 25000 kJ/kg  
Results of the measurements, shown in Table 1, are used to 

determine the calorific value of the coal fuel as a function of 
the five remaining parameters. The function is achieved in the 
WTA ANN weight training process. 



TABLE I.  TRAINING DATA 

No. Inputs Out 

 x1 x2 x3 x4 x5 y 

16 107,5145 54,8844 36,0694 5,4806 11,6474 1 

17 113,1214 54,5954 34,9422 5,7780 11,6474 1 

18 116,0116 63,7861 40,0289 6,3789 11,6474 1 

: : : : : : : 

5656 123,5838 63,3526 40,0289 6,7795 12,0145 2 

5657 123,9884 63,3526 40,0289 6,6824 12,0145 2 

5658 116,3006 63,4682 40,0289 7,1861 12,0145 2 

: : : : : : : 

7993 113,6994 75,1156 34,9133 8,4910 12,5116 3 

7994 115,1445 74,3064 34,9133 7,8902 12,5116 3 

7995 113,1214 74,7399 35,4913 7,5867 12,5116 3 

: : : : : : : 

8191 118,4971 66,7630 41,7052 6,4821 12,5000 4 

8192 121,6185 64,3353 39,4509 6,3789 12,5000 4 

8193 120,5202 67,0231 41,7052 6,7795 12,5000 4 

B. WTA neural network formulation 

 

Fig. 1. WTA neural network. 

Recently, plenty of artificial neural network architectures [16-

19] have been applied in many control systems. Our approach 

adopts a competitive WTA architecture [18-23]. The WTA 

network consists of m neurons with programmable synapse 

weights and WTA circuit as shown in Fig. 1. In the WTA 

network the weight vectors are represented by 

                      (1)

the input voltage vector is represented by 

                          (2)

and the output voltage vector 

                              (3)

where n denotes number of input signals, m denotes number of 

neurons and 

        
             

 

   

                                     

is defined. The WTA function consists of identifying the 

largest among components of UOUT. The m
th

 output current 

winner selection is based on the following criterion of 

maximum activation among all m neurons participating in a 

competition 
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Weights of the winning neuron with the largest uOUTk are 

adjusted, while the weights of the others remain unaffected. 

As such, WTA basic learning law to update synaptic weight of 

the k
th

 neuron that won the competition can be expressed as 

[16] 

   
      

            
     (6)

where   > 0 is a small learning constant. The losing neurons 

are not allowed to change its weights. Equation (6) can be 

rearranged to update each vector element (synaptic weights of 

the k
th

 winning neuron) as follows 

    
            

          (7)

C. FPAA implementation 

Our idea is to build a cost effective classification system of 
the calorific value of a coal fuel in combustion chambers with a 
help of FPAA. For our work four FPAA AN231E04 device is 
used [24]. Five input programmable competitive 4-WTA ANN 
circuit has been implemented in the FPAA to classify caloricity 
of the coal fuel. It consists of three 2-WTA circuits shown in 
Fig. 2. The 2-WTA circuit identifies the smaller of its two 
voltages and produces an output voltage which is a copy of its 
local winner. The 4-WTA circuit shown in Fig. 3. 

 

Fig. 2. 2-WTA circuit. 

 

Fig. 3. 4-WTA circuit structure. 



Programmability of synaptic weight wkj with respect to 

learning signal uskj is usually the following linear function 

    
                  (8)

where c is constant. Taking equation (8) into account in 

equation (7) the following update for learning signal can be 

obtained 

     
             

    
 

 
     (9)

The learning signal is obtained in a structure composed of 

summer, delay circuit and amplifiers where appropriate gains 

are equal 1  and  /c. The programmable synaptic weight 

circuit is shown in Fig. 4. 

Proposed FPAA competitive ANN has been implemented 
in MATLAB program to train the ANN synaptic weights. 
Obtained weights are implemented in the FPAA ANN to 
classify the calorific value of the coal fuel. The structure of the 
4-WTA ANN is implemented in FPAA1 and in  shown in Fig. 
5a. The programmable weight structure is implemented in 
FPAA4 shown in Fig. 5b. 

 

 

Fig. 4. Programmability of a synaptic weight  circuit structure wkj. 

 

a) 

 
 

 

b) 

 
Fig. 5. An implementation of the WTA ANN, a) proposed 4-WTA ANN  

b) proposed programmable synaptic weight. 

III. EXPERIMENTAL RESULTS 

The combustion process parameters in the boiler have been 
measured and gathered in Table 1. They have been used  to 
train ANN shown in Fig. 1 by the use of MATLAB program. 
MATLAB implementation of the WTA ANN weight training 
process is shown in Fig. 6. The weight matrix after training 
process is shown in Table 2. Obtained weights have been used 
to determine the calorific value of the coal fuel loaded into the 
boiler. The WTA ANN has been verified in the recall mode by 
the MATLAB program and the FPAA implemented network. 
Obtained data shown in Table 3 confirm that the calorific value 
of the coal fuel not need to be measured and it can be 
recognized by the WTA ANN very fast. The results can be 
easily used in any hardware system to control a combustion 
process. 

TABLE II.  CALCULATED WEIGHTS AND BIASES OF ANN 

 ANN 

w 

w11 = 0.7144 

w12 = 0.6713 

w13 = 0.4230 
w14 = 0.3088 

w15 = 0.8932 

w21 = 0.8684 

w22 = 0.9129 

w23 = 0.6819 
w24 = 0.2915 

w25 = 0.9253 

w31 = 0.5528 

w32 = 0.4975 

w33 = 0.2576 
w34 = 0.3421 

w35 = 0.8422 

w41 = 0.7965 

w42 = 0.7816 

w43 = 0.5125 
w44 = 0.3081 

w45 = 0.9180 

b b1 = 10.8922 b2 = 10.8860 b3 = 10.8642 b4 = 10.8502 

IV. CONCLUDING REMARKS 

Proposed competitive WTA ANN has been designed and 
implemented successfully in the FPAA device to classify the 
calorific value of the fuel loaded into the industrial heat boiler. 
The hardware implementation of the WTA ANN results in 
several advantages such as: programmability of the neural 
network structure, fast parallel data processing and low cost. 
Proposed WTA ANN may be easily incorporated into a 
complex hardware system to control the combustion process. 



 

Fig. 6. MATLAB implementation of the weight learning process. 

TABLE III.  TEST DATA 

No. 
Inputs ANN FPAA 

x1 x2 x3 x4 x5 y' y'' 

1 117,3410 59,5665 34,9422 7,3925 11,6474 1 1 

2 114,6243 58,8150 34,3642 7,2893 11,6474 1 1 

3 113,4682 59,8844 35,4913 7,5867 11,6474 1 1 

31 98,0925 60,6069 40,0289 8,4910 12,0145 2 2 

32 97,2254 59,3931 40,0289 8,5882 12,0145 2 2 

78 120,1156 75,1156 35,4913 6,6824 12,5116 3 3 

79 117,8035 74,4509 34,9133 6,5853 12,5116 3 3 

93 129,7688 72,7457 45,1156 5,1772 12,5000 4 4 

94 130,4624 71,2428 42,8613 5,4806 12,5000 4 4 
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